ABSTRACT. We prove in a simple and coordinate-free way the equivalence between the classical
definitions of the mass or the center of mass of an asymptotically flat manifold and their alternative
definitions depending on the Ricci tensor and conformal Killing fields. This enables us to prove an
analogous statement in the asymptotically hyperbolic case.

INTRODUCTION

Mass is the most fundamental invariant of asymptotically flat manifolds. Originally defined in
General Relativity, it has since played an important role in Riemannian geometric issues. Other
interesting invariants, still motivated by physics, include the energy momentum, the angular mo-
momentum or the center of mass (which will be of interest in this note). Moreover, they have been
extended to other types of asymptotic behaviours such as asymptotically hyperbolic manifolds.

One of the main difficulties when handling the mass of an asymptotically flat or hyperbolic
manifolds (or any of its companion invariants) comes from the fact that they are defined as a limit
of an integral expression on larger and larger spheres, and depending on the first derivatives of the
metric tensor written in a special chart where the metric coefficients are asymptotic to those of the
model (flat, hyperbolic) metric at infinity.

It seems unavoidable that a limiting process is involved in the definitions. But finding expres-
sions that do not depend on the first derivatives but on rather more geometric quantities is an old
question that has attracted the attention of many authors. It was suggested by A. Ashtekhar and
R. O. Hansen [1] (see also P. Chruściel [6]) that the mass could be rather defined from the Ricci
tensor and a conformal Killing field of the Euclidean space. Equality between the two definitions,
as well as a similar identity for the center of mass, has then been proved rigorously by L.-H. Huang
using a density theorem [12] due to previous work by J. Corvino an H. Wu [10] for conformally

The goal of this short note is twofold: we shall provide first a simple proof of the equality
between both sets of invariants. Although similar in spirit to Miao-Tam [13], our approach com-
pletely avoids computations in coordinates. Moreover, it clearly explains why the equality should
hold, by connecting it to a natural integration by parts formula related to the contracted Bianchi
identity. A nice corollary of our proof is that it can be naturally extended to other settings where
asymptotic invariants have been defined. As an example of this feature, we provide an analogue
of our results in the asymptotically hyperbolic setting.

Date: April 17, 2015.
2010 Mathematics Subject Classification. 53B21, 53A55, 58J60, 83C30.
The author is supported in part by the project ANR-12-BS01-004 ‘Geometry and topology of open manifolds’.
1. Basic facts

We begin by recalling the classical definitions of the mass and the center of mass of an asymptotically flat manifold, together with their alternative definitions involving the Ricci tensor. In all that follows, the dimension n of the manifolds considered will be taken to be at least 3.

Definition 1.1. An asymptotically flat manifold is a complete Riemannian manifold (M, g) such that there exists a diffeomorphism Φ (called a chart at infinity) from the complement of a compact set in M into the complement of a ball in \mathbb{R}^n, such that, in these coordinates and for some $\tau > 0$,

$$|g_{ij} - \delta_{ij}| = O(r^{-\tau}), \quad |\partial_k g_{ij}| = O(r^{-\tau-1}), \quad |\partial_k \partial_l g_{ij}| = O(r^{-\tau-2}).$$

Definition 1.2. If $\tau > \frac{n-2}{2}$ and the scalar curvature of (M, g) is integrable, the quantity

$$m(g) = \frac{1}{2(n-1)\omega_{n-1}} \lim_{r \to \infty} \int_{S_r} (-\delta^\tau g - d\operatorname{tr}_e g)(v) \, d\operatorname{vol}^e_r,$$

exists (where e refers to the Euclidean metric in the given chart at infinity, δ is the divergence defined as the adjoint of the exterior derivative, v denotes the field of outer unit normals to the coordinate spheres S_r, and ω_{n-1} is the volume of the unit round sphere of dimension $n-1$) and is independent of the chart chosen around infinity. It is called the mass of the asymptotically flat manifold (M, g).

Definition 1.3. If $\tau > \frac{n-2}{2}$, the scalar curvature of (M, g) is integrable, $m(g) \neq 0$, and the following so-called Regge-Teitelboim (RT) conditions are satisfied:

$$|g^{\text{odd}}_{ij}| = O(r^{-\tau-1}), \quad |\partial_k (g^{\text{odd}}_{ij})| = O(r^{-\tau-2})$$

(1.1)

(where \cdot^{odd} denotes the odd part of a function on the chart at infinity), the quantities

$$c^\alpha(g) = \frac{1}{2(n-1)\omega_{n-1}m(g)} \lim_{r \to \infty} \int_{S_r} [\tau^\alpha (-\delta^\tau g - d\operatorname{tr}_e g) - (g - e)(\partial_\alpha \cdot) + \operatorname{tr}_e (g - e) d\tau^\alpha](v) \, d\operatorname{vol}^e_r,$$

exists for each α in $\{1, \ldots, n\}$. Moreover, the vector $C(g) = (c^1(g), \ldots, c^n(g))$ is independent of the chart chosen around infinity, up to the action of rigid Euclidean isometries. It is called the center of mass of the asymptotically flat manifold (M, g).

Existence and invariance of the mass have been proved by R. Bartnik [2] or P. T. Chruściel [5]. The center of mass has been introduced by Regge and Teitelboim [15, 16], and Beig and Ó Murchadha [3], see also the more recent works of J. Corvino and R. Schoen [8, 9]. We shall recall here the basic idea underlying the existence and well-definedness of the asymptotic invariants, following the approach due to B. Michel [14]. Let g and b be two metrics on a complete manifold M, the latter one being considered as a background metric. Let also \mathcal{F}^g (resp. \mathcal{F}^b) be a (scalar) polynomial invariant in the curvature tensor and its subsequent derivatives, V a function, and $(M_r)_{r>0}$ an exhaustion of M by compact subsets, whose boundaries will be denoted by S_r (later taken as large coordinate spheres in a chart at infinity). One then may compute:

$$\int_{M_r} V \left(\mathcal{F}^g - \mathcal{F}^b \right) \, d\operatorname{vol}^b = \int_{M_r} V (D\mathcal{F})_b (g - b) \, d\operatorname{vol}^b + \int_{M_r} V Q(b, g) \, d\operatorname{vol}^b$$

\[\text{The normalization factor in front of the integral is chosen here to give the expected answer for the so-called generalized Schwarzschild metrics; the same applies to the definition of the center of mass below.}\]
where Q denotes the (quadratic) remainder term in the Taylor formula for the functional \mathcal{F}. Integrating by parts the linear term leads to:

$$\int_{M_r} V \left(\mathcal{F}^b - \mathcal{F}^\beta \right) \, d\text{vol}^b = \int_{M_r} \langle (D \mathcal{F})^\beta_b V, g - b \rangle \, d\text{vol}^b + \int_{S_r} \mathcal{U}(V, g, b) + \int_{M_r} V Q(b, g) \, d\text{vol}^b.$$

This formula shows that $\lim_{r \to \infty} \int_{S_r} \mathcal{U}(V, g, b)$ exists if the following three natural conditions are satisfied: (1) g is asymptotic to b so that $V \left(\mathcal{F}^b - \mathcal{F}^\beta \right)$ and $V Q(b, g)$ are integrable; (2) the background geometry b is rigid enough (this means that any two ‘charts at infinity’ where g is asymptotic to b differ by a diffeomorphism whose leading term is an isometry of b); (3) V belongs to the kernel of $(D \mathcal{F})^\beta_b$ (the adjoint of the first variation operator of the Riemannian functional \mathcal{F}). Moreover, Michel proves in [14] that it always defines an asymptotic invariant, independent of the choice of chart at infinity, as a consequence of the diffeomorphism invariance of the integrated scalar invariant \mathcal{F}^b. If one chooses $\mathcal{F}^b = \text{Scal}^b$ on an asymptotically flat manifold (hence $b = e$, the Euclidean metric),

$$(D \text{Scal})^\beta_b V = \text{Hess}^V + (\Delta^V) e,$$

and its kernel consists of affine functions. Letting $V \equiv 1$, it is easy to check that the limit over spheres above yields the classical definition of the mass:

$$2(n-1)\omega_{n-1} m(g) = \lim_{r \to \infty} \int_{S_r} \mathcal{U}(1, g, e).$$

Thus,

$$2(n-1)\omega_{n-1} m(g) = \lim_{r \to \infty} \int_{M_r} V \text{Scal}^b \, d\text{vol}^b - \lim_{r \to \infty} \int_{M_r} Q(e, g) \, d\text{vol}^b$$

Integrable scalar curvature yields convergence of the first term, whereas the integrand in the second term is a combination of terms in $(g - b)^2 g$ and $g^{-1} \partial g^2$: it is then integrable since $\tau > \frac{n-2}{2}$. Moreover, Michel’s analysis shows that it defines an asymptotic invariant, independent of the choice of chart at infinity [14]. If one takes $V = V^{(\alpha)} = x^\alpha$ (the α-th coordinate function in the chart at infinity, for any α in $\{1, \ldots, n\}$), the integral over spheres now yields the classical definition of the center of mass, i.e.

$$2(n-1)\omega_{n-1} m(g) e^\alpha(g) = \lim_{r \to \infty} \int_{S_r} \mathcal{U}(V^{(\alpha)}, g, e) \quad \text{for any } \alpha \in \{1, \ldots, n\}.$$

Under the RT conditions, these converge as well and the vector $C(g)$ is again an asymptotic invariant.

Definition 1.4. Let X be the radial vector field $X = r \partial_r$ in the chosen chart at infinity. Then we define the Ricci version of the mass of (M, g) by

$$m^\text{ric}(g) = - \frac{1}{(n-1)(n-2)\omega_{n-1}} \lim_{r \to \infty} \int_{S_r} \left(\text{Ric}^g - \frac{1}{2} \text{Scal}^g \right) (X, \nu) \, d\text{vol}^g$$

whenever this limit is convergent. For α in $\{1, \ldots, n\}$, let $X^{(\alpha)}$ be the Euclidean conformal Killing field $X^{(\alpha)} = r^2 \partial_r - 2x^\alpha x^\nu \partial_\nu$ and define the Ricci version of the center of mass:

$$c^\text{ric}_R(g) = \frac{1}{2(n-1)(n-2)\omega_{n-1} m(g)} \lim_{r \to \infty} \int_{S_r} \left(\text{Ric}^g - \frac{1}{2} \text{Scal}^g \right) (X^{(\alpha)}, \nu) \, d\text{vol}^g$$

whenever this limit is convergent. We will call this vector $C_R(g) = (c^1_R(g), \ldots, c^n_R(g))$.

Notice that these definitions of the asymptotic invariants rely on the Einstein tensor, which seems to be consistent with the physical motivation.
2. Equality in the asymptotically flat case

In this section, we will prove the equality between the classical expressions $m(g), C(g)$ of the mass or the center of mass and their Ricci versions $m_R(g), C_R(g)$. The proof we will give relies on Michel’s approach described above together with two elementary computations in Riemannian geometry.

Lemma 2.1 (The integrated Bianchi identity). *Let h be a C^3 Riemannian metric on a smooth compact domain with boundary Ω and X be a conformal Killing field. Then*

$$
\int_{\partial\Omega} \left(\text{Ric}^h - \frac{1}{2} \text{Scal}^h \right) (X, \nu) d\nu_{\partial\Omega} = \frac{n-2}{2n} \int_{\Omega} \text{Scal}^h (\delta^h X) d\nu_{\Omega},
$$

where ν is the outer unit normal to $\partial\Omega$.

Proof. – This equality is a variation of the well known Pohozaev identity in conformal geometry, as stated by R. Schoen [17]. Our version has the advantage that the divergence of X appears in the bulk integral (the classical Pohozaev identity is rather concerned with the derivative of the scalar curvature in the direction of X). The proof being very simple, we will give it here. From the contracted Bianchi identity $\delta^h \left(\text{Ric}^h - \frac{1}{2} \text{Scal}^h h \right) = 0$, one deduces that

$$
\int_{\partial\Omega} \left(\text{Ric}^h - \frac{1}{2} \text{Scal}^h h \right) (X, \nu) d\nu_{\partial\Omega} = \int_{\Omega} \left(\text{Ric}^h - \frac{1}{2} \text{Scal}^h h, (\delta^h)^* X \right)_h d\nu_{\Omega},
$$

where $(\delta^h)^*$ in the above computation denotes the adjoint of the divergence on vectors, i.e. the symmetric part of the covariant derivative. Since X is conformal Killing, $(\delta^h)^* X = \frac{1}{n} (\delta^h X) h$ and

$$
\int_{\partial\Omega} \left(\text{Ric}^h - \frac{1}{2} \text{Scal}^h h \right) (X, \nu) d\nu_{\partial\Omega} = -\frac{1}{n} \int_{\Omega} \text{tr}_h \left(\text{Ric}^h - \frac{1}{2} \text{Scal}^h h \right) (\delta^h X) d\nu_{\Omega} = \frac{n-2}{2n} \int_{\Omega} \text{Scal}^h (\delta^h X) d\nu_{\Omega},
$$

and this concludes the proof. \(\square\)

Lemma 2.1 provides a link between the integral expression appearing in the Ricci definition of the asymptotic invariants (see [1,3]) and the bulk integral $\int \text{Scal}^h (\delta^h X)$. This latter quantity also looks like the one used by Michel to derive the definitions of the asymptotic invariants, provided that some connection can be made between divergences of conformal Killing fields and elements in the kernel of the adjoint of the linearized scalar curvature operator. Such a connection stems from our second Lemma:

Lemma 2.2. *Let h be a C^3 Riemannian metric and X a conformal Killing field. If h is Einstein with Einstein constant $\lambda(n-1)$, then $V = \delta^h X$ sits in the kernel of $(\mathcal{D} \text{Scal})^h$; more precisely:*

$$
\text{Hess}^h V = -\lambda V h.
$$

Proof. – Recall that $(\mathcal{D} \text{Scal})^h V = \text{Hess}^h V + (\Delta^h V) h - V \text{Ric}^h$ [4, 1.159(e)], so that its kernel is precisely the set of solutions of (2.1) if $\text{Ric}^h = \lambda(n-1) h$. Let ϕ_t be the (local) flow of X, which acts by conformal diffeomorphisms, and e^{2u} the conformal factor at time $t \geq 0$, with $u_0 = 0$. Hence $\text{Ric}^{\phi_t h} = \lambda(n-1) \phi_t^2 h$, which can be translates as $\text{Ric}^{e^{2u} h} = \lambda(n-1) e^{2u} h$ as ϕ_t is conformal. From [4, 1.159(d)],

$$
\text{Ric}^{e^{2u} h} = \text{Ric}^h - (n-2) \left(\text{Hess}^h u_t - du_t \otimes du_t \right) + \left(\Delta^h u_t - (n-2) |du_t|^2 \right) h,
$$

where $u_t = e^{-t} u$.
from which one deduces that
\[-(n - 2) \left(\text{Hess}^h u_t - du_t \otimes du_t \right) + \left(\Delta^h u_t - (n - 2) |du_t|^2 \right) h = \lambda (n - 1) \left(e^{2u_t} - 1 \right) h. \]

We now differentiate at \(t = 0 \). Denoting by \(\dot{u} \) the first variation of \(u_t \), which is related to \(X \) through \(\delta^h X = -n \dot{u} \), and taking into account that \(u_0 = 0 \), one gets:
\[-(n - 2) \text{Hess}^h \dot{u} + (\Delta^h \dot{u}) h = 2(n - 1) \lambda \dot{u} h. \]

Tracing this identity yields \(2(n - 1) \Delta^h \dot{u} = 2n(n - 1) \lambda \dot{u} \), so that \(\Delta^h \dot{u} = n \lambda \dot{u} \). Inserting this in Equation (2.2) leads to \(\text{Hess}^h \dot{u} = -\lambda \dot{u} h \), which is the desired expression. \(\square \)

We now have all the necessary elements to prove the equality between the classical expressions of the asymptotic invariants and their Ricci versions in the asymptotically flat case.

Theorem 2.3. If \((M, g)\) is a \(C^3\) asymptotically flat manifold with integrable scalar curvature and decay rate \(\tau > \frac{n-2}{2} \), then the classical and Ricci definitions of the mass agree: \(m(g) = m_R(g) \). If \(m(g) \neq 0 \) and the RT asymptotic conditions are moreover assumed, the same holds for the center of mass, i.e. \(e^\alpha(g) = e^\alpha_R(g) \) for any \(\alpha \in \{1, \ldots, n\} \).

Proof. We shall give the complete proof for the mass only, the case of the center of mass being entirely similar. Fix a chart at infinity on \(M \). As the mass is defined asymptotically, we may freely replace a compact part in \(M \) by a (topological) ball, which we shall decide to be the unit ball \(B_0(1) \) in the chart at infinity. The manifold is unchanged outside that compact region. For any \(R \gg 1 \) we define a cut-off function \(\chi_R \) which vanishes inside the sphere of radius \(\frac{R}{2} \), equals 1 outside the sphere of radius \(\frac{3R}{4} \) and moreover satisfies
\[|\nabla \chi_R| \leq C_1 R^{-1}, \quad |\nabla^2 \chi_R| \leq C_2 R^{-2}, \quad \text{and} \quad |\nabla^3 \chi_R| \leq C_3 R^{-3} \]
for some universal constants \(C_i \) (\(i = 1, 2, 3 \)) not depending on \(R \). We shall now denote \(\chi = \chi_R \) unless some confusion is about to occur. We then define for each \(R > 4 \) a metric on the annulus \(\Omega_R = A_{\frac{R}{4}}(R) \):
\[h = \chi g + (1 - \chi)e, \]
and we shall also denote by \(h \) the complete metric obtained by gluing the Euclidean metric inside the ball \(B_0(\frac{R}{4}) \) and the original metric \(g \) outside the ball \(B_0(R) \).

Let now \(X \) be a conformal Killing field for the Euclidean metric. From Lemma 2.2 \(V = \delta^h X \) sits in the kernel of the adjoint of the linearized scalar curvature operator \((D \text{Scal})_c \). Computing as in Lemma 2.1 over the annulus \(\Omega_R = A_{\frac{R}{4}}(R) \),
\[\int_{S_R} \left(\text{Ric}^h - \frac{1}{2} \text{Scal}^h h \right) (X, \nu^h) = \int_{\Omega_R} \langle \text{Ric}^h - \frac{1}{2} \text{Scal}^h h, (\delta^h) X \rangle \]
\[= \int_{\Omega_R} \langle \text{Ric}^h - \frac{1}{2} \text{Scal}^h h, (\delta^h)_0 X - \frac{\delta^h X}{n} h \rangle \]
\[= -\frac{1}{n} \int_{\Omega_R} \text{tr}_h \left(\text{Ric}^h - \frac{1}{2} \text{Scal}^h h \right) \delta^h X \]
\[+ \int_{\Omega_R} \langle \text{Ric}^h - \frac{1}{2} \text{Scal}^h h, (\delta^h)_0 X \rangle, \]
where the volume forms and scalar products are all relative to \(h \) but have been removed for clarity (notice moreover that all boundary contributions at \(\frac{R}{4} \) vanish since \(h \) is flat there). Hence
\[(2.3) \quad \int_{S_R} \left(\text{Ric}^h - \frac{1}{2} \text{Scal}^h h \right) (X, \nu^h) = \frac{n - 2}{2n} \int_{\Omega_R} (\delta^h X) \text{Scal}^h + \int_{\Omega_R} \langle \text{Ric}^h - \frac{1}{2} \text{Scal}^h h, (\delta^h)_0 X \rangle. \]
We now choose $X = r \partial_r$, (the radial dilation vector field), and recall that $\delta^X X = -n$ in this case. We can now replace the volume form $d\text{vol}^b$, the divergence δ^b, and the the tracefree Killing operator $(\delta^b)^b_0$ by their Euclidean counterparts $d\text{vol}^c$, δ^c, and $(\delta^c)^c_0$: from our asymptotic decay conditions, our choice of cut-off function χ, and the facts that $\tau > \frac{n-2}{2}$ and $|X| = r$, one has for the first term in the right-hand side of (2.3):

$$\int_{\Omega_R} (\delta^b X) \Scal h d\text{vol}^b - \int_{\Omega_R} (\delta^c X) \Scal h d\text{vol}^c = O\left(R^{n-2\tau-2}\right) = o(1)$$

as R tends to infinity (note that the second term in the left-hand side does not tend to zero at infinity as the scalar curvature of h may not be uniformly integrable). As $(\delta^c)^c_0 X = 0$, the last term in (2.3) can be treated in the same way and it is $o(1)$, too. One concludes that, in the case X is the radial field,

$$(2.4) \quad \int_{S_R} \left(\operatorname{Ric}^h - \frac{1}{2} \Scal h \right)(X, \nu^h) d\text{vol}_{S_R} = \frac{n-2}{2n} \int_{\Omega_R} (\delta^c X) \Scal h d\text{vol}^c + o(1).$$

It remains to apply Michel’s analysis over the annulus Ω_R:

$$\int_{\Omega_R} (\delta^c X) \Scal h d\text{vol}^c = \int_{S_R} \mathcal{U}(\delta^c X, g, e) + \int_{\Omega_R} (\delta^c X) Q(e, h) d\text{vol}^c + o(1)$$

(the boundary contribution at $r = \frac{R}{2}$ vanishes again since $h = e$ there). Taking into account $\delta^c X = -n$, our asymptotic decay conditions, the assumptions on χ, and $\tau > \frac{n-2}{2}$, the Q-term tends to 0 at infinity (for the very same reason that made it integrable in Michel’s analysis) and one gets

$$\frac{1}{2(n-1)\omega_{n-1}} \int_{S_R} \left(\operatorname{Ric}^h - \frac{1}{2} \Scal h \right)(r \partial_r, \nu^h) d\text{vol}_{S_R} = \frac{2-n}{2} m(g) + o(1).$$

If one now chooses $X = X^{(a)} = r^2 \partial_a - 2x^a x^i \partial_i$, i.e. X is the essential conformal Killing field of \mathbb{R}^n obtained by conjugating a translation by the inversion map, one has $\delta^c X^{(a)} = 2n x^a = 2n V^{(a)}$ and one can use the same argument. Some careful bookkeeping shows that all appropriate terms are $o(1)$ due to the Regge-Teitelboim conditions and one concludes that

$$\frac{1}{2(n-1)\omega_{n-1}} \int_{S_R} \left(\operatorname{Ric}^h - \frac{1}{2} \Scal h \right)(X^{(a)}, \nu^h) d\text{vol}_{S_R} = (n-2) m(g) e^{\alpha}(g) + o(1)$$

as expected. \hfill \square

3. Asymptotically hyperbolic manifolds

We now show that our approach can be used to get analogous expressions in other settings where asymptotic invariants have been defined. Looking back at what has been done in the previous sections, we can see that the proofs relied on the following two crucial facts:

1. the definition of the invariant should come (through Michel’s analysis) from a Riemannian functional, which should in turn be related with some version of the Bianchi identity;
2. there should exist some link between conformal Killing vectors and functions in the kernel of the adjoint linearized operator of the relevant Riemannian functional.

In the presence of these two features, the equality between the classical definition of the invariants (à la Michel) and their Ricci versions follows almost immediately, as the estimates necessary to cancel out all irrelevant terms are exactly the same as those used in the definition of the invariants (see for instance Equation (2.4) and the arguments surrounding it.)
As an example of this, we shall study the case of asymptotically hyperbolic manifolds (but we insist that the idea is completely general). The mass was defined there by P. T. Chruściel and the author [22] and independently by X. Wang [23], see [11] for a comparison.

Definition 3.1. An asymptotically hyperbolic manifold is a complete Riemannian manifold \((M, g)\) such that there exists a diffeomorphism \(\Phi\) (chart at infinity) from the complement of a compact set \(M\) into the complement of a ball in \(\mathbb{R} \times S^{n-1}\) equipped with the background hyperbolic metric \(b = dr^2 + \sinh^2 r g_{S^{n-1}}\), satisfying the following condition: if \(\epsilon_0 = \partial_r, \epsilon_1, ..., \epsilon_n\) is some \(b\)-orthonormal basis, and \(g_{ij} = g(\epsilon_i, \epsilon_j)\), there exists some \(\tau > 0\) such that,

\[
|g_{ij} - \delta_{ij}| = O(e^{-\tau r}), \quad |\epsilon_k \cdot g_{ij}| = O(e^{-\tau r}), \quad |\epsilon_k \cdot \epsilon_l \cdot g_{ij}| = O(e^{-\tau r}).
\]

Definition 3.2. If \(\tau > \frac{\alpha}{2}\) and \((\text{Scal}^b + n(n - 1))\) is integrable in \(L^1(e^\tau d\text{vol}_b)\), the linear map \(M(g)\) defined by\(^2\)

\[
V \mapsto \frac{1}{2(n - 1)\omega_{n-1}} \lim_{r \to \infty} \int_{S_r} \left[V(-\delta^b g - d \text{tr}_b g) + \text{tr}_b(g - b) dV - (g - b)(\nabla^b V, \cdot) \right] (v) d\text{vol}_r,
\]

is well-defined on the kernel of \((\text{D Scal})_b^n\) and is independent of the chart at infinity. It is called the mass of the asymptotically hyperbolic manifold \((M, g)\).

Existence and invariance of the mass can be proven by using Michel’s approach [14]. The space \(\mathcal{K} = \ker(\text{D Scal})_b^n\) consists of functions \(V\) solutions of \(\text{Hess}^b V = V h\). It is \((n + 1)\)-dimensional and is generated, in the coordinates above, by the functions \(V^{(0)} = \cosh r\), \(V^{(\alpha)} = x^\alpha \sinh r\) (for \(\alpha \in \{1, ..., n\}\), where \(x^\alpha = (x^1, ..., x^n)\) are the Euclidean coordinates on the unit sphere induced by the standard embedding \(S^{n-1} \subset \mathbb{R}^n\). Contrarily to the asymptotically flat case, the center of mass is already included here and doesn’t need to be defined independently. Indeed, the space \(\mathcal{K}\) is an irreducible representation of \(O_0(n, 1)\) (the isometry group of the hyperbolic space), so that all functions \(V\) contribute to the single (vector-valued) invariant \(M(g)\). In the asymptotically flat case, this kernel splits into a trivial 1-dimensional representation (the constant functions) which gives rise to the mass, and the standard representation of \(\mathbb{R}^n \otimes O(n)\) on \(\mathbb{R}^n\) (the linear functions), which gives birth to the center of mass.

The hyperbolic conformal Killing fields are the same as those of the Euclidean space, but their divergences must now be explicit with respect to the hyperbolic metric. In the ball model of the hyperbolic space, one computes that \(\delta^b X^{(0)} = -n V^{(0)}\) for the radial dilation vector field \(X^{(0)}\), whereas \(\delta^b X^{(\alpha)} = -n V^{(\alpha)}\) for the (inverted) translation fields. We can now argue as above, but starting with the modified Einstein tensor

\[
G^g = \text{Ric}^g - \frac{1}{2} \text{Scal}^g g - \frac{(n - 1)(n - 2)}{2} g.
\]

The formula analogous to that of Lemma 2.1 reads, for any conformal Killing field \(X\),

\[
\int_{\Omega} \tilde{G}^g(X, \nu) d\text{vol}^g_{\partial\Omega} = \frac{n - 2}{2n} \int_{\Omega} \left(\text{Scal}^g + n(n - 1) \right) \delta^g X d\text{vol}^g_{\Omega},
\]

which is the expected expression to apply Michel’s approach for the mass. The sequel of the proof is now completely similar to the one given above. The very same arguments that provide convergence of the mass in Michel’s approach show that all irrelevant contributions at infinity

\(^2\)As in the asymptotically flat case, the normalization factor comes from the computation for a reference family of metrics, which is the generalized Kottler metrics in the asymptotically hyperbolic case.
cancel out, so that (keeping the same notation as in the previous sections, the only difference being that polynomial decay estimates must be changed to exponential ones)
\[
\int_{\Omega_X} (\delta^b X) \left(\text{Scal}^b + n(n-1) \right) \, d\text{vol}^b = \int_{\Omega_X} (\delta^b X) \left(\text{Scal}^b + n(n-1) \right) \, d\text{vol}^b + o(1)
\]
\[
= \int_{S^r} \text{B}(\delta^b X, g, b) + o(1).
\]

The relation between the divergences of the conformal Killing vectors and the elements in the kernel of the adjoint linearized operator is stated in Lemma 2.2, and one concludes as above with the following alternative definition of the mass involving the Ricci tensor.

Theorem 3.3. For any \(i \in \{0, \ldots, n\}, \)
\[
M(g) \left[V^{(i)} \right] = -\frac{1}{n} M(g) \left[\delta^b X^{(i)} \right] = -\frac{1}{(n-1)(n-2)\omega_{n-1}} \lim_{r \to \infty} \int_{S^r} G^g(X^{(i)}, v) \, d\text{vol}_{S^r}.
\]

Acknowledgements. The author thanks Julien Cortier and Piotr Chruściel for useful comments.
References

Université de Montpellier, Institut montpelliérain Alexander Grothendieck, UMR 5149 CNRS, France

E-mail address: marc.herzlich@umontpellier.fr