Séminaire Gaston Darboux

Le vendredi 13 février 2009 à 11:15 - salle 431

Guillaume Vassal
Structures conformes asymptotiquement plates

Les variétés asymptotiquement plates sont des variétés riemanniennes non compactes dont la métrique possède des propriétés de décroissance à l'infini. Sous certaines conditions nous pouvons associer un invariant géométrique à ce type de variété appelé la masse. T. Parker et C. H. Taubes en suivant la méthode de E. Witten (1981) ont démontré (1982) la conjecture de la masse positive dans le cas où la variété est spinorielle. Dans cet exposé, nous généralisons au cas conforme ces notions et ce théorème. Nous définirons les notions de structures de Weyl asymptotiquement plates et de la masse associée, puis, en utilisant la théorie des spineurs à poids, nous démontrerons un théorème de masse positive.



Voir la liste des séminaires