Séminaire Gaston Darboux

Le vendredi 28 février 2014 à 11:15 - salle 431

François Fillastre
Brunn--Minkowski dans l'espace temps de Minkowski

La théorie de Brunn--Minkowski s'occupe des relations entre la somme et le volume des corps convexes dans l'espace euclidien. Les corps convexes sont décrits par des fonctions sur la sphère. Le résultat principal est que le volume est log-concave. On fait une théorie analogue pour une classe de convexes dans l'espace de Minkowski. Le compacité sera remplacée par une invariance globale sous l'action de groupes particuliers d'isométries linéaires. En particulier, ces convexes peuvent être décrits par des fonctions sur des variétés hyperboliques compactes. On peut associer à ces convexes un "covolume", et on peut montrer qu'il est convexe.



Voir la liste des séminaires